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I. INTRODUCTION

The Poisson channel is an additive noise channel with output Y, = X, + N, where
N ={N; }oct<r is the channel noise and X ={X, }o<i<r is the transmitted signal into which is
encoded the message #={4, }o<:<r. X is sometimes viewed as the output of the channel encoder.
All processes in the channel model are defined on a common probability space (Q2,F ,P ). We write
F! for the natural history of 4, F¥ for the natural history of N, etc.

Poisson-type point processes [6] are a class of simple point processes in which the compensa-
tor takes the form

{a,db(.s)

where g, is some nonnegative predictable process (the intensity of the point process) and b (t) is a
deterministic nonnegative right~-continuous and nondecreasing function. In the Poisson channel
(often called the Poisson-type point process channel) both X and N are Poisson-type point
processes. We shall only consider Poisson-type point processes with b (¢) == t. The noise N in the
Poisson channel is given to be directed by the H-predictable noise intensity A, where H is a his-
tory such that F¥ C H, for all t €[0,T]. X is given to be directed by the F'~ FY -predictable
encoding intensity x;. Then the channel output ¥; = X; + N, is also a Poisson-type point pro-
cess directed by the intensity 5, = x; + A, where n, is predictable with respect to the global his-
tory F'*HvFY . In the Poisson channel model, the message # is encoded into the channel
encoder output X; indirectly via the encoding intensity x, = x;(0,Y). F,’v F,'-predictability of
x: allows for nonanticipative message encoding and causal, noiseless, instantaneous feedback.

The augmented noise history H is introduced into the channel model so that the whole class
of Poisson-type point processes with integrating function 8 (t) =t can be considered as models
for the channel noise. In particular, renewal processes, self-exciting processes and doubly stochas-
tic Poisson processes fall into this class [7]. For instance, N is a doubly stochastic Poisson process

for H, = F4v F/ (suitably completed).

In the absence of constraints on the encoder output, the information capacity of the Poisson
channel is infinite. A peak constraint 0 < x, < ¢ is generally imposed on the encoder intensity (1],
[2], [3]. An average constraint

T
E(fx:dt] < koT
0

has also been considered [1], [3]. These and other encoder constraints are considered in Section V
where some justification is given for emphasis on the peak constraint in this and earlier papers [1],
2], (3}

To define channel capacity let us, py, and pey be the marginal and joint measures induced
by the message and output processes, # and Y, on the spaces Sg, Sy, and SeX Sy where Sy and
Sy are the spaces of trajectories of § and Y over the interval [0,T]. Write the induced product

measure as pgxy. Then, the average mutual information in § and Y over the interval [0,T] is [5] -
u For
d ]
IT6,Y]=E 1n-—"-'-'—] \k1

d poxy 0
. . . . . . zed 0
provided poy << pax v ; otherwise I7 [#,Y] = oo. Using an obvious notation, the conditional mutual , .

information [5] in § and Y given a trajectory of the noise intensity is

d poy |a By
T i — e
I"6Y |A]=E [‘“ 2 pexr 1a 'A] ' Distribution;

Availability ques

f—’"ThExii ‘and/or
Bist Special
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The channel information capacity is

1
C = Syp S%P 717[0,)’]

where the suprema are taken over all admissible message processes, 8, and all admissible channel
encodings, X . The class of admissible message processes is generally taken to be all jointly
measurable real-valued processes with index set [0,T]. A further comment on admissibility of
messages and encodings for the Poisson channel can be found in [2].

We shall assume that the message and noise are independent. Specifically, it is assumed that
the histories H and F' are independent. This assumption has the essential consequence that the
average mutual information in the channel is upper-bounded by the expected conditional informa-
tion given the path of the noise intensity. Independence of the histories H and F’ also implies
that, in the no-feedback case, x, and A, are independent processes.

The capacity of the Poisson channel has been previously treated for cases in which the noise
intensity is a real constant A, = X\ [2], [3] and for cases in which the noise intensity is a deter-
ministic function of time A; = X\(t) [1]. Applications of and further references to the Poisson
channel model are given in [4]. We refer to [1] for motivation for treating the channel noise inten-
sity as a stochastic process.

It will be convenient to have notations for certain conditional expectations. For any ran-
dom variable z define

¢ =FE[ |FY],
£=E[Z|Fg):vFTA,
z =E[Z|F;’:'Fg!]
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I1. AVERAGE MUTUAL INFORMATION
FOR RANDOM NOISE INTENSITY

The average mutual information in the Poisson channel with random noise intensity is given
by Liptser and Shiryayev [6] to be

T
IT[G,Y]——:E[{(w(x, +At)"w()2¢ +At))dt] (1)

where w(z)=zlnz. Note that ¥, = yx,. For the case of nonrandom noise intensity,
A, =4, = A, . In this case the usually intractable calculation of f\, and A , is avoided and (1)is
greatly simplified. In the case of stochastic noise intensity, the presence of A, and A , limits the
direct usefulness of the expression for I7 {4,Y]. The conditional information given the path of the
noise intensity

T
IT[H,Y |A] = E[f(“’(x: +A,)—w()2, +A,))dt | FIA]
0
sidesteps this difficulty. We have the following inequality:

Proposition 1: Suppose the message and noise intensity processes 8 and A are independent.
Then

T
1718,Y] < E[{(w(x, FA)-w(ke + A ))dt] .

Proof: This is a special case of a general inequality which follows from Kolmogorov’s for-
mula [8]:

1X,2]+ E[I[X,Y | 2] = 11X (¥,2)]
for random elements X', Y, Z provided pyyz << ptx Xpiyz. Independence of X and Z implies
I[X,Z2]=0. Also, I[X (Y,Z)] > I|X,Y] so, in the context of the Poisson channel,
ITOY)<E[IT[,Y |A)].

Proposition 2:
T
ITO,Y] > E|f(w(xe +A¢)-w(Xe +A))det] .
0

Proof: Using Jensen’s inequality, we have E{w (X, + A,)] 2 E[w(X: + A,)]. Use this ine-
quality in (1) and the result follows.

Let & be the class of marginally stationary noise intensities A, such that |A ,~A, |—0
as. as I — oo. Define

¢M = {AteéiEIW(Ag)l <°O} ’
&p = {A,€ ®: A, is bounded} .

Let L >0 be a r.v. such that L is bounded or E{LInL] is finite. Then A, = L belongs to ®y




or ®g. More generally, let p (¢) be a bounded nonnegative periodic function with period ¢, and
suppose II is uniformly distributed over [0,¢o] and independent of L . Then A, = Lp (¢ -TI) belongs
to q’u or d’g .

Proposition 8: Suppose A; € &, U ®p. Then, for the Poisson channel

T
1 . . 1 s
Jim < IT[0,Y] = lim —E {(w(x:+A:) w(xe +A))de| -

Proof: Use the upper and lower bounds for 17T [6,Y] given in Propositions 1 and 2 and the

result follows.

According to Proposition 3,
im LI7(6,Y] = lim —E[I7
Jim —<I7(6,Y] = lim —cE[I"[6,Y | A)]

for noise intensities A, € &, U $p.




III. CHANNEL CAPACITY

In this section we give capacity results for the Poisson channel with and without feedback.
For clarity, we content ourselves with treating marginally stationary noise intensities; that is,
noise intensities having a common marginal distribution F(z) = P {A, <z} for all t€[0,T]. How-
ever, the results and their proofs given below extend in a natural way to nonstationary noise
intensities. Also, we only impose a peak constraint on the encoder intensity. Using the method of
Pavis [3], the extension to encoder intensities both peak- and average-constrained is obvious. We
also note that the results given here for a constant peak constraint on the encoder intensity can
be adjusted to apply to a time-varying peak constraint by simple function approximation of the
peak constraint as in [1].

Theorem 4: Let the noise process N, in a Poisson channel have marginally stationary noise
intensity A, with marginal distribution F'(t) = P {A,; <z } and suppose A, is independent of the
message process f, . Suppose the encoder output intensity x, is peak-constrained, 0 < x; < ¢ and
require x; to be F’'v F'Y -adapted so that causal feedback is possible. Then

€ < B, =E[C(A)]

where
1+z /¢

C(z)=%ll+-;—l —x[l+%]ln[l+-§—].

Proof. By Proposition 1

T
IT[8,Y] < E[E[{((/’(Xt Ar) - d(xe A ))dt IAt]] .

From [1], for nonrandom noise intensity \(t), we have

0

T T
E [f(cﬁ(x; A1) - B Mt )))dt] < {C(k(t ))dt
so, for marginally stationary A,,

1 1 T
HIT0Y) < E[?{C(A,)dt] = E[C(A)) -

Theorem 5. Consider the Poisson channel presented in Theorem 4 but now restrict the
encoding intensity to be F''-adapted so that no feedback is allowed. Then

C<By = 1max_1_E[h(P,At)]
D

:SPS
where
h(P1A1)=P¢(C;A¢)‘¢(PC Ar)
with
Hz,y)=1(z +y)n(z +y)-ylny .




Proof: x; is F'-adapted so x; and A, are independent. Thus E [X¢ | A;] = E [x;]. Then, by
Jensen’s inequality we have E [w(Xx; +A,)] = E [w(E [x,] + A;}]. So, by Proposition 1,
T
IT8,Y] < [ (E[8(xe A - E[S(E [x:]A)]) det .
0

Let Ao be A, for t = 0. The independence of A; and x, together with the marginal stationarity

of A, gives E [8(x¢ ,A¢ )] = E [p(x¢ ,A)]- Also E [¢(E [x, AL )] = E [¢(E [x;],A0)]- Then
T

IT[8,Y] < {(Elcﬁ(x; Al - E [¢(E [x. ]Ao)] ) dt .
Thus
LTJT (6,Y] < 855 (E [6(x: Ao)] - E [4(E [x: ), A0)]) -

In the supand above, t enters only through x;. Let u(A )= Pox,;(A). The support of u is con-
tained in [0,c ]. Define

Q,.(ﬂE{sI(z)u(dz)-

Then @ ,(¢) = E[x,] where i is the identity function. Also Q ,(E [¢o]) = E [¢(x: ,A¢)] using the
independence of x; and Ag. We can now write

¢ < ¥ [QuE ) - Ele @)

where M is the set of all probability measures on ([0,c¢|,B[[0,c]]). For any u€M there is a
k€[0,c ) such that Q,(s) =k so

0 <ok B [QuE W) - Elnl@,1)]
= ock%e [Q:(G})LQ W(E [#o]) - E [$olk ) ] -

Q ,°F is linear so

dolc)

[

¢o(c)k]].

wl QE(pd) = ek Qy[E[%‘

Qi )= Qi )=

;]) +Q,,[E[

The function ¢g(z ) - -'Z—q&o(c ) is maximum at z=0 and z=c (for any value of Ay.) Thus

E[Q,40- HLy
is maximized for Q (i )=k by the probability measure
M) =<2, u(e) ==
in which case E [ (¢ ¢°(c° )iyl S0
¢ < oz‘:l;,E[%(:)k -¢o(")]

= o242 [PE (e A0l - E 6(pc Aol




= Ogl:glE [h (P Ay )] .

ForO<p <1, H(p)=E[h(p, A;)] has the first and second derivatives
dH

G = Elble Al - ¢ ~ cElin(pe +A,)
= ¢E(In(K; +A,)] - cE[In(pc + A, )] (@)
where K; = k (A, ) with
U PP

and

d®H _ e%E 1 _
dp? pec +A,;

H(p ) is concave and so has a unique maximum over p € [0,1]. To see that H(p ) has its maximum
in the subinterval p€[1/¢,1/2] we just note that according to (2), p sy Mmaximizing H(p) must

satisfly
P max€ +At
E [IDW] =0
and the range of k is [¢ /e ¢ /2]. Thus
o2 Eh(p, A = 1T 21 E[h(p, A)] .
e~ —2

The proof is complete.
Of course, B,y < B; since

B, = max Efh(p,A)]

1
C P K e
P23

o'.-

and

B =E10(A.)1=E[L§‘“ h(p,At)]-

1
Py
Theorem 6: Let the noise intensity A, in a Poisson channel belong to ®y or $p. Suppose
the encoder intensity is peak-constrained and no feedback is allowed. Then € — B,; as T — oo.
Proof: There exists a sequence of message processes {#(™)} (2] such that [1]
T
lim IT[6(™),Y |A] = [h(p A,)dt
m —00 []
where p € [0,1] is a parameter of the process gm), By Proposition 3

lim llm 717[0("') Y] = lim —fE' [k (p ,A¢ ) dt

m —o00T —o0 T =00




A is marginally stationary so

lim lim —-IT [6™),Y) = E[h(p A) -

m —ooT —~oo
This is true for all p€[0,1] so
lim ¢ > SPYE[h(p, AL -

This together with Theorem 5 proves the result.

Efficient communication through the Poisson channel requires that the encoder be "tuned”
to the channel; i.e., that the encoder be adjusted in accordance with the amount of noise present.
This requires knowledge of the channel noise intensity. In cases where the noise intensity is ran-
dom the state of the noise intensity process is unknown to the sender. An encoding scheme incor-
porating feedback is then needed whereby the sender makes a feedback-based estimate of the
noise intensity and then adjusts the encoding process to agree with that estimate. Without feed-
back the capacity cannot exceed B,; < By . The next theorem states that € —+ B; as T — oo if
causal feedback is allowed.

Theorem 7. For the Poisson channel with marginally stationary noise intensity A, belonging
to ®y or &g, peak-constrained encoder intensity, and causal feedback, € — B; as T — oo.

Proof: As in the proof of Theorem 6 we have

m—o0oT —wco T T —o0

T
lim lim -—IT[H("" Y] = Jim iT [Eh(p Ar)de .
0
Choose p = k(A ;)/c and check that C(z)=h(k(z)/c,z). For A, € ®5U &y
lim E [h(k(R ¢)/¢ A )] = lim E[C(A)] = E[C(A)] -
So
Jim € > lim lim —JT[a('") Y] =E[C(A,) .

This completes the proof.
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IV. IMPROVEMENT AFFORDED BY FEEDBACK

For Poisson charnels with nonrandom noise intensity B; = B,; consistent with the fact
that causal feedback does not increase channel capacity in this case [1]. For stochastic noise inten-
sity, however, B, 7 B,, in general. Thus for Poisson channels with random noise intensity A,
the fractional difference

B; -B,,
B,

is, in the sense of Theorems 4, 5, 6, and 7, a measure of the improvement aflorded by the use of
causal feedback. Let A; be marginally stationary and let L be a random variable with distribu-
tion F(z)= P{A,<z}. Define D to be the set of all such L, i.e., D is the set of all nonnegative
random variables. We shall show that

sup B1 ~Buy

[ —5,— =ouss.

This means that, while causal feedback offers some improvement in the case of stochastic noise
intensity, the improvement may never be very large. In particular, in the cases where B, and
B,; are the channel capacities, the improvement afforded by feedback never exceeds 1.63% of
that achievable without feedback. An analytic expression is obtained for the above supremum by
way of the following series of lemmas. W.l.0.g. we take ¢ =1.

Lemma 8: Let D, be the set of all bounded nonnegative random variables. Then
su BI —Bﬂl — Su B / ‘Bl/
L€ B! Le€D, B, .

Proof. For any nonnegative r.v. L and positive real number flet Ly= L1 <5 + Bl > )
Then Ly D, . Write B, (L) and B,; (L) for By and B,; evaluated, respectively, for a margi-
nally stationary noise intensity whose marginal distribution is that of the r.v. L . We have

By (L)-By (L) By(Lg)- By (Lp)
B, (L) By (L)

_ lB-: (L) By(L), Byl) By(Ly
B@L) By B L) B

< B-I (L)
= By (L)By(Ly)

| Bay (L) = Bay (Ly) |
By (Ly)

[ By (L)-By(Lg)| +

Now C(-) is a decreasing function so
E[C(L) <E[C(Lo<E[C(L)+C(AP{L>F}.
Then, as § — oo,
| By (L)- By (Lg)| = |E[C(L)]-E[C(Lg)]|
< C(AP{L>$}
—-0.
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Also
Sk (p N) = pln(l + 1/3) - In(1 + p /)
and, for |z | —oo,
1 1 ~
ln(l+1/z)=;—§z—2+o(z 2)

so, for A—o0,

7} 1-
Xzah(p,X)=—£L§—pl+0(l).

Thus, for all X large enough, h (p ,\) is decreasing in X\. Then, for 8 large enough,
Eh(p,L) <E[h(p,Lg) < Elh(p,L)]+ h(p.A)P{L > B}

so that, as § — oo,
| By (L)=Boy (Lg)| = | ") Elh(p L)) - " E [k (p L)) |
<P XLEh(p L) -E[h(p.Lo)]| -
< k(2 AP {L > B}
= C(A)P{L> B}
—0.

This completes the proof.

Lemma 9: Let D4 be the family of all random variables L of the form

0 wp.e¢
L={ P

g wp. l-e
for 8 >0 and € € (0,1). Then
sup Br =By _ sup BrBu
L€, B, L€, B '

Proof: Suppose L€ D, and let 8 = esssupg L. There is a unique Ly € D4 with

{0 w.p. €
Ly= B w.p. l-€

for some e€(0,1) such that E[C(L)]=E|[C(L;)]. Moreover By (L)< Bay (L) so
By (L)-Bs (L)< By (Ly)- By (L3). Thus
By - By,
B,

B, - B,
. B

L,

Noting thi.t D, C D, , we get the desired result.

B,; may be written By = E[h(pma,L)] where, by (2), Pmax is obtained from
E((pma+ L) =E|[In(k(L)+ L)]. For L €Dy, pmu is a function of ¢ and B. Its partial
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derivatives  with  respect to ¢ and B can also be obtained from
E(In(pma + L )] = E[In(k (L) + L)] by implicit differentiation. Then, by the usual methods of
differential calculus, the function

By - B,
I A

L,

can be shown to approach its supremum over {(¢,8):0<e<1,8>0} as e —» 0 with = (ee)t.

Thus,

B, -B B, -
sup *~4 ) 5 J nf
L<D,” B, in~5,

L,

where

0 wp.e

1 .
—e? w.p. 1-¢

Lemma 10:Fore >Cand L =L,

8+e?
8e

B, = € + o (e).
Proof For L =1L,
B; =¢C(0}+(1€)0 ().

By Th. 2 in (3],
Clz)=g;+0(3)-

Using C(0) = 1/¢, this leads to the desired result.

Lem . 11:Fore >0and L =1L,
an = €p ¢(1+CP 1/2) +o (6)

where p , is the value of p in [1/e,1/2] which maximizes H(p,L )= H(p,L ).

Proof: Define K, = k(L ). Then
Bn! = peE [¢(1’L ¢)] -E [¢(P ch ()]
=p+pEKAL)-EllpA+LJn(p+L)] + E [L dnL ]
=p.+p{EMIK+L) - En(pA+L))}-E[L n(p,+L )]+ E[LJnL ]

Recall from (2) that E [In(K .+L /)] = E [In(p +L )] Thus
By =p~E[Ldn(p,+L,)]+ E[LJoL]
1

L L
ee

1
) + (l—():ln e

1
=p,~ (l—e)c—e—lz;(p,+

=p- (l-c)c—le—ln(l+c €p )
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Using In(1+2) = z-22/2+4 0 (22) the desired result follows.

Theorem 12:
8+e? [ Py
L g1+ 2
sup BI— nf _ 8¢ 2
LeD B, 8+¢?
8e
where

Po= ]in(l)p, = 0.436815
€+
satisfies Inpy + epo=1¢ /2 - 1.

Proof: By the preceding lemmas,

8+e? [ cpc]
8¢ Peilt 2

L,;_‘ 8+82

8e

B; -B B, -
sup Zf " s 4 ] " Zaf
LeD™ B, lim =3,

+ o (1).

Thus all that remains to be shown is that Inpg+ epp=-¢/2-1.

Eln(K +L,)] = E[In(p +L )] from (4) we get
(1+-el—‘)(l—c)ln(l+e €)-1=elnp, + (1-¢)In(1+c ¢p ).
The LHS of this equation can be expressed

LHS = (%— 1)e + o (€)

while for the RHS, using p, = po + o (1), we get
RHS = elnpg + e epg + o (¢).

The proof is complete.

Using
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V. ENCODER OUTPUT CONSTRAINTS

The usual type of constraint imposed on the encoder in determining the capacity of the
Poisson channel is a peak constraint (1], [2], [3]:

0 <x¢<c, 0€[0,T] (3)
or an average constraint (1], [3]:
T
E(fx,ds] < koT . (4)
o

In this paper, also, we have used primarily a peak constraint on encoder output intensity. This
emphasis in favor of a peak constraint is now given some justification.

(3) and (4) are constraints on the intensity (and compensator) of the encoder output. One
might rather consider constraints imposed directly upon the output X; of the encoder. We write
P, to signify the class of conditionally Poisson processes. For X € P, we have [4, p. 407]

Var [X;] = Var [A;] + E[A,]

where A, is the compensator of X;. Thus for X € P, the constraint Var [Xr] < P is equivalent
to the pair of constraints on the encoder compensator:

ElAr] < kg

Var [Ar) < V
with O<kog<P,0<V <P, and ko+ V<P.

For clarity let us write €(c ,ko,V,P) for the capacity given the following constraints on the
er coder output:

O<xe<e,
0< E[Ar] < ko,
0<Var{Ar] < V,
0<Var[Xr]< P .

To exclude a constraint the corresponding argument of €(-,-,7,’) is set to oo; €(o0,",,") is the
channel capacity with no peak constraint on the encoder intensity, etc. A subscript is used
Cp‘(',',',’) to indicate that, for the encoder output X, we require X € P,. Using this notation,

we have

d-""P‘ (O0,00,00,P) = (‘.:l‘]/;))en CP‘ (Oo,ko,V,OO)

where R = {(z,y): 220, y>0,z+y <P }.
We now show, for A; = X, that

€ (00,00,00,P ) = o0 .

The proof uses several lemmas.

Lemma 13: Let 6,, 0<t <T be a random telegraph signal [2]; i.e., a left-continuous homo-
geneous Markov jump process with states {0,1} and infinitesimal parameter matrix

[qm qm] = [M(—l—rl _m(1-p)
)

910 911
4

———————————————————————————————————————




-14 -

Set P {6,=1} = p . Then 0, is stationary, mean-square continuous, E [§,] = p, and

~Z et |

Rys,t)=FE[6,0,)=pZ+p(l-p)e *

Proof: Using some obvious notation
E6)=P{8 =1}
= Po(t)(1-p) + Py(t)p

= [p —pc_%‘ ](l—p) + [p +(1—P)¢-%‘ ]p

=p.
Consider s < t. Then
Ry(s ,t) = P {6,=1, 0,=1}
= P {0,_, =1, =1}
= Py(t-2)p

= [p + (l—p)e-%(c_‘)]p :

Lemma 14: Suppose 8, is the telegraph signal described above and let

t
A = [co,ds .
0

Then E [A;] = pct and

2 2(1_ 2 3(y_ _m, IR N ]
RA(,,¢)=pzcm+2°P—,fj”m+°_PL§_u[e e e )
m

Proof. We just note that 6§, is mean-square continuous so
st

RA(a,t)={{c2R,(u ,v )dvdu .

Lemma 15: For A, and 6; as above and t€[0,T'], Var [A;] — 0 as m —o0.

Proof:
2 2. 8071 .
var (A = 22p3apye + 282002 ) [ 5]

Lemma 16: Cp (¢ ko, V ,00) = Cp (¢ ,kg,00,00) for all V> 0.

Proof: Make explicit the dependence of 6, on the parameter m by writing 8, = 6{"). Then
with the right choice of p 3],

lim -ITIT[O("‘),Y] = O5 (¢ ko,00,0).

m —+00
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For any V>0, there is an mg such that Var{A;]<V for all m>m, Thus
CP;(C ,ko,V,OO) = CP‘(C ,kQ,O0,00).

Theorem 17: Let A, = X be a real constant. Then €(00,00,00,P) = co.

Proof: Choose (ko,V) € R . Then -

€ (00,00,00,P) > Cp‘(oo,oo,oo,P)

v

CP‘ (°°,ko, V,CX))

v

lim Cp (¢ ,kg,V ,00)

¢ =00 €

= lim Cp (¢ ,kg,00,00)
€ —00 ¢

= lim €(c ,kg,00,00)
¢ —00

= lim kq $eN) _ #(koN)
¢ —00 c

= lim ko [In(k (\)+X) + 1] - ¢(ko,\)
€ =00

> lim kg In(c /e + X) + 1] - ¢(ko,N)
¢ —0O

=00 .

The above approach shows as well that €(oco,kq,V,P) =00 for all k4 >0, V>0, P>0.

To further indicate the importance of the peak constraint, recall the following capacity
result from [1]: let the noise intensity be nonrandom and suppose 0 < x¢ < ¢ (t) where ¢(t) is
chosen freely subject only to

T
1
—fec(t)dt <P
ol

for some given P> 0. Then € = P /e . If this encoder constraint is reformulated to eliminate the
peak constraint; i.e. the similar, but weaker, constraint
T

1
—[x dt < P
T{‘

is imposed, then the capacity is infinite.

Thus, it appears that a peak constraint on the encoder intensity or its equivalent for the
encoder compensator is needed - at least for the group of constraints considered here - to give a
well-posed capacity problem.
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VI. SUMMARY

Significant differences exist between Poisson channels with nonrandom noise intensity and
those with stochastic noise intensity. In the nonrandom case it is known (1], [2] that causal feed-
back does not increase channel capacity. By contrast, we have shown that causal feedback does
increase capacity (though it seems by only a small amount) when the noise intensity is random.
Also, expressions are available [1] for the channel capacity in the nonrandom case for T < oo
while, for stochastic noise intensity and T <o, only least upper bounds have so far been
obtained. These differences arise out of the simplification of the expression for average mutual
information that is possible in the case of nonrandom noise intensity. In the case of nonrandom
noise intensity A, = A\(t), the expression for the channel information

T
ITgY]=E [{(¢(x; A )= d(%e A ))dt] (5)
simplifies to

T
ITjpY] = E[{(Mx: A1) - dlxe M )))d‘] :

For stochastic noise intensity A, and A ¢ remain, making (5) relatively intractable. Only for a cer-
tain class of noise intensities can much headway be made. For A; € $,,U &5, it was shown that
for the Poisson channel with feedback

Tlim C = E[C(A))
while, without feedback,

T —o0

lim € = 1771 (PE[#(c Ac)] - E[#(pe A)]) -
e~ ~2
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